Ludwig-Maximilians-Universität, Chair of Metabolic Biochemistry
print


Breadcrumb Navigation


Content

Changes in luminal pH caused by calcium release in sarcoplasmic reticulum vesicles

Biophys J. 1998 Jan;74(1):290-6.

Authors/Editors: Kamp F
Donoso P
Hidalgo C
Publication Date: 1998
Type of Publication: Journal Article
Fast (milliseconds) Ca2+ release from sarcoplasmic reticulum is an essential step in muscle contraction. To electrically compensate the charge deficit generated by calcium release, concomitant fluxes of other ions are required. In this study we investigated the possible participation of protons as counterions during calcium release. Triad-enriched sarcoplasmic reticulum vesicles, isolated from rabbit fast skeletal muscle, were passively loaded with 1 mM CaCl2 and release was induced at pCa = 5.0 and pH = 7.0 in a stopped-flow fluorimeter. Accompanying changes in vesicular lumen pH were measured with a trapped fluorescent pH indicator (pyranin). Significant acidification (approximately 0.2 pH units) of the lumen occurred within the same time scale (t(1/2) = 0.75 s) as calcium release. Enhancing calcium release with ATP or the ATP analog 5'-adenylylimidodiphosphate (AMPPNP) produced >20-fold faster acidification rates. In contrast, when calcium release induced with calcium with or without AMPPNP was blocked by Mg2+, no acidification of the lumen was observed. In all cases, rate constants of luminal acidification corresponded with reported values of calcium release rate constants. We conclude that proton fluxes account for part (5-10%) of the necessary charge compensation during calcium release. The possible relevance of these findings to the physiology of muscle cells is discussed.

Related Links