Ludwig-Maximilians-Universität, Chair of Metabolic Biochemistry
print


Breadcrumb Navigation


Content

CLN5 is cleaved by members of the SPP/SPPL family to produce a mature soluble protein

Exp Cell Res. 2017 Aug 1;357(1):40-50

Authors/Editors: Jules F
Sauvageau E
Dumaresq-Doiron K
Mazzaferri J
Haug-Kröper M
Fluhrer R
Costantino S
Lefrancois S
Publication Date: 2017
Type of Publication: Journal Article

The Neuronal ceroid lipofuscinoses (NCLs) are a group of recessive disorders of childhood with overlapping symptoms including vision loss, ataxia, cognitive regression and premature death. 14 different genes have been linked to NCLs (CLN1-CLN14), but the functions of the proteins encoded by the majority of these genes have not been fully elucidated. Mutations in the CLN5 gene are responsible for the Finnish variant late-infantile form of NCL (Finnish vLINCL). CLN5 is translated as a 407 amino acid transmembrane domain containing protein that is heavily glycosylated, and subsequently cleaved into a mature soluble protein. Functionally, CLN5 is implicated in the recruitment of the retromer complex to endosomes, which is required to sort the lysosomal sorting receptors from endosomes to the trans-Golgi network. The mechanism that processes CLN5 into a mature soluble protein is currently not known. Herein, we demonstrate that CLN5 is initially translated as a type II transmembrane protein and subsequently cleaved by SPPL3, a member of the SPP/SPPL intramembrane protease family, into a mature soluble protein consisting of residues 93-407. The remaining N-terminal fragment is then cleaved by SPPL3 and SPPL2b and degraded in the proteasome. This work further characterizes the biology of CLN5 in the hopes of identifying a novel therapeutic strategy for affected children.

Related Links